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ABSTRACT 

 

 

A cycle could support a Synchronous optical networking (SONET) ring, or a reliable 

multicast, or a multipoint to multipoint traffic request, or a p-cycle protecting connections between 

any two-node pair  that belong to the cycle.  Determining a cycle passing through a specific set of 

nodes is a complex process.  This paper presents a novel heuristic algorithm to find a least cost 

possible simple or non-simple cycle with multiple must-include nodes.  In case the required cycle 

must be a simple cycle only, then it is apparent that our problem is similar to a Travelling Salesman 

Problem, in which the objective is to find the least cost simple cycle with all the nodes in a given 

travel network.  In our algorithm, we allow complex cycles in the sense that links are allowed to be 

used only once, whereas a node may appear multiple times.  This kind of cycle is called a non-

simple cycle and it can increase the success rate of finding the cyclic route with desired set of 

nodes.  The heuristic algorithm in this paper utilizes Breadth First Search and Tree construction 

algorithms to find a least cost and shortest route between nodes.  The experimental results show that 

our algorithm has lower failure rate of requests than existing heuristic algorithms like Optimized 

Collapsed Ring (OCR) and Enumeration.  The fault-tolerance for single link failure can be achieved 

by routing the traffic in both the directions of the cycle.   
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Chapter 1 Introduction 

 

The need for creation of cycles in a mesh network involving some targeted set of nodes 

occurs in many different contexts in connection routing.   In Metropolitan core networks 

sometimes the traffic has to be routed through specific set of nodes which has wavelength 

conversion or grooming functionality.  Also in SONET ring architecture, creation of disjoint 

cycles form integral part of protection.  An example of SONET ring two fiber unidirectional 

protection is shown in Figure 1-1, where all data from Digital Cross Connects (DCS) or Add Drop 

Multiplexer (ADM) are transmitted on the working or active path and the standby path (protection 

path) lies in waiting. When a failure in the active path occurs, the two network nodes affected 

immediately switch to the standby line, provided the standby path is not in close proximity to the 

first and also damaged.  So the cycle based routing finds significant application in Core networks.   

 

 

Figure 1-1: Two Fiber Unidirectional SONET ring architecture 

.  
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In some cases the cycle may be needed while satisfying the requirement of failure 

location independent protection.  For example, in protected point to point connection, the cycle is 

created implicitly when both working and protected paths are concatenated together.  Consider 

the path protected point to point connection shown in Figure 1-2.   The primary path that carries 

traffic between nodes A and B is shown in dashed line.  The backup disjoint path is shown in 

dotted lines.  These two paths implicitly form a cycle passing through nodes A and B.   

 

 

 

Figure 1-2: Need for a cycle for a point to point connection 

 

A cycle creation is also simple and useful way to share path level protection amongst 

many point to point connections.  Consider Figure 1-3, which depicts a network with nodes A, B, 

C, and D have the following connections between them:  A-B, B-C, C-D, A-C, and B-D.  All 

these connections can be protected from single link failure in the network if nodes A, B, C, D are 

connected by a cyclic route (A-B-D-C-A) that has enough unused bandwidth.  This cycle 

provides protection in both the cases of a single link forming the entire path (as is the case with 

A-B) or in the case of a multilink path such as the connection A-X-C.    
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Figure 1-3: Cycle creation for many point to point connections 

 

In this paper, we consider only Multipoint communication where we wish to create a 

cycle that includes all nodes of interest.  Multipoint communication between a set of nodes say 

{A, B, C} can be defined as multiple simultaneous multicast sessions.  In each of the session, at 

a time either of A or B or C is a source node and the others nodes are destination nodes.  

Multipoint communication has numerous applications on the Internet including distributed 

database applications, negotiation and e-commerce systems, online games, and various forms of 

video-conferencing.  Most of these applications are real-time and require the routing to satisfy a 

specified upper bound on the end-to-end delay.  We only focus on multipoint communications, 

which has predefined fixed set of participating nodes and require a possible least cost route, like 

in Metropolitan Core Networks (SONET/DWDM).   

We propose a heuristic algorithm which solves the multipoint communication by 

presenting single route for all multicast sessions in a single multipoint communication.  Our 

heuristic algorithm tries to find a least cost and possibly a shortest cycle passing through all 

must-include nodes.  Internally our algorithm uses a Breadth First search approach to construct a 

tree and to find the shortest and least cost path between two nodes as described in later sections. 
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For fault tolerance, we transmit the traffic in both directions of the cycle.  This is similar 

to Unidirectional Path Switched Ring (UPSR) protection. This ensures that in case of a link 

failure, the traffic reaches all nodes in the cycle without interruption.  The transmitting node is 

responsible for ensuring that the signal is dropped upon return after travelling the complete 

cycle.  All nodes listen to signals from both directions. In fault free operation, a receiver will 

receive the same information twice and can either ignore the duplicate information or can use it 

for verification.  

 

Figure 1-4: Fault-tolerant protocol 

An example of this fault tolerance protection with s1 as source node and s2, s3, and s4 as 

destination nodes is shown in Figure 1-4 (a). When a fault occurs, as shown in Figure 1-4 (b), all 

the destination nodes still receive the transmitted information, but only once, without any 

knowledge of failure in the network and without any added failure restoration delay.  By this 

kind of protection scheme, we eliminate the cost of a dedicated disjoint backup path and also 

reduce the latency since the traffic is transmitted in both the directions. When compared with 

other protection mechanisms like dual multipoint tree and p-cycle, the multipoint cycle based 

protection scheme has advantages like no loss of traffic, faster restoration, and no need to detect 

the fault location. 
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Chapter 2 Review of Literature 

 

In [1], Bertsekas defines the routing function in two parts. The first part selects a route for 

the session during the connection establishment phase, and the second part ensures that each 

packet of that session is forwarded along the assigned route.  In this paper, we consider only the 

route selection algorithms.  As described in [2], Multicast routing algorithms can be classified 

into one of two categories.  The first category is the shortest path algorithms which minimize the 

cost of each path from the source node to a multicast group member node. Bellman–Ford‘s 

algorithm and Dijkstra‘s algorithms are two well-known shortest path algorithms; they are the 

basis of the distance vector and link state routing protocols, respectively. The other category is 

the minimum Steiner tree algorithms. Their objective is to minimize the total cost of the 

Multicast tree.  Efficient minimum Steiner tree heuristics are given in [3], [4] and [5]. 

In most of the existing research, the multipoint routing problem has been studied in the 

multicasting domain for transmission from one source to a given set of receivers, thereby 

restricting the consideration of multiple sources for the performance analysis of the proposed 

solutions. 

 In [2], the authors have proposed a heuristic algorithm to find the shortest simple path 

with multiple must-include nodes, by finding the shortest path between each consecutive pair of 

nodes in must-include set and concatenating those segments to create a simple path.  They didn‘t 

define on what basis the nodes are reordered in the must-include nodes (I) set.   Moreover the 

time complexity of this heuristic is exponential in terms of size of the set, I.  Their results show 

very high blocking percentage of more than 20% of requests failed for normal network scenario. 

The routing of multipoint connections in a large scale packet switched network is addressed in 

[7].  It solves the multipoint routing with the shortest sub tree which contains the set of must-

include nodes.  Finding the shortest tree or total cost optimized tree is Steiner minimal Tree 

(SMT) problem, a well-known problem, which is NP-Complete [8].  In [9], the authors explored 
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the potential solutions for the problem of delay-constrained multipoint communication with 

multiple sources in a distributed environment by optimizing the number of cores for tree 

construction.  They extended the existing solution for multicast tree routing to the case for 

multiple sources with improved efficiency in their approach. 

 

Although there are many tree based heuristic algorithms for multicast routing in literature, 

those algorithms have their own disadvantages when extended to fault tolerant multipoint 

communication problem.  Most of the tree based heuristics have high computation complexity 

for constructing a tree for each source.  This approach might be optimal for multicast traffic but 

not for multipoint routing.  Also it is not simple to provide fault tolerance in multipoint routing 

via trees.   

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

7 

 

Chapter 3 Cycle Based Routing Problem 

 

3.1 Network Model  

 

The network is modeled using a connected undirected graph G (V; E), V is the set of 

vertices representing nodes in the network, E is the set of edges (u, v) ϵ E where u, v ϵ V.  An 

edge (u, v) represents the physical link that allows communication between nodes u and v.  The 

Multipoint request contains a set of nodes, S (SV).  The final cyclic route found by the 

algorithm should include all the nodes in this set S.  We refer to each element or nodes in the set 

S as S-nodes.  Let m represent the size of set S.  Let s (p) be the function which returns number of 

nodes belonging to set S in the path p. 

 

3.2 Problem Definition 

 

Given a graph G (V, E) and S a subset of nodes in V and k be an integer with k <= |E|, 

Is there a simple or non-simple cyclic route p (V’, E’), where V’ is the set of nodes in p and E’ is 

the set of edges in p, such that S V’ and |E’|<=k? 

 

This cyclic route could also pass through the nodes which are not in set S, as required 

based on network topology.  If such a cyclic route cannot be established, then the request is 

rejected.  This rejection is referred as blocked requests.  Finding the smallest cycle that includes 

a specified set of nodes is a hard problem.  We show that this problem is hard and decision 

version of it is NP-Complete. 

Proof: We first note that CBR is in class NP.  Given a valid solution, it is possible to 

provide a verification that it is a valid cycle and |E‘| <= k in polynomial time. To demonstrate 

that the decision version of CBR problem is NP-complete, we show that an instance of the 
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Hamiltonian cycle problem reduces to an instance of the CBR problem in polynomial time. The 

Hamiltonian cycle problem asks if a graph G (V, E) has a simple cycle that visits every v ϵ V in 

graph G.  This can be reduced to an instance of CBR problem as follows.  Let‘s build graph for 

CBR problem with S = V and k = |V|. Then CBR problem for graph G‘‘ (V‘‘, E‘‘), k, and S is 

equivalent of finding a Hamiltonian cycle in G. 

 

Assume G has a Hamiltonian Cycle.  Then the Hamiltonian cycle is the required solution 

for CBR problem which goes through all nodes in Graph G and satisfies the constraint of |E‘| = 

k.  Also, note that since k = |V| the solution for CBR problem can only be a simple cycle, as n 

nodes can be connected with n edges only in a simple cycle, i.e., each node can appear only 

twice as the end nodes of edges.  No non-simple cycle can satisfy k = |V| and S = V 

simultaneously.  The solution for CBR problem cannot have |E‘| < k, since there would exists a 

node si ϵ S and not present in V‘.  Assume there is a solution for CBR problem with S = V and k 

= |V|.  This implies every node is visited once and all the nodes are included in the cycle.  Thus it 

reduces into solution for Hamiltonian cycle problem.   

 

Since the reduction can be obtained in polynomial time and a solution can be verified in 

polynomial time, CBR problem is NP-complete.  Therefore, we develop a heuristic algorithm to 

find an appropriate cycle to route the given multipoint requests. 
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Chapter 4 Cycle Based Routing Algorithm (CBRA) 

 

4.1 Algorithm Description 

 

First, we developed a heuristic algorithm called Multipoint Cycle Routing Algorithm 

(MCRA).  This algorithm is described in [6]. Given a graph, G and a set S, where {si represents 

S-nodes; for all si ϵ S}, as input, MCRA finds the near-optimal cycle in three steps.   

 

1. In Step-1, MCRA finds an Initial path. 

2. MCRA searches for Disjoint-path between the two end nodes of Initial-path in Step-II.  If 

Step-II is successful, a cycle is formed passing through some of S-nodes.  If all the S-nodes 

are included, then the algorithm terminates successfully thereby skipping Step-III. 

3. In Step-III, S-nodes which are not included in steps I and II are inserted by replacing the 

existing segments in the cycle.  If all the S-nodes are included in the cycle then the algorithm 

terminates reporting request is accepted otherwise the request is blocked.   

 

Although MCRA algorithm has low time complexity, it has a high request blocking in 

finding the cycles.  To improve the performance of the algorithm, we developed a second 

algorithm called Cycle Based Routing Algorithm (CBRA).  CBRA also finds the near-optimal 

cycle in three steps as depicted in Figure 4-1. The main difference between MCRA and CBRA is 

the way path between two nodes is found in all three steps based on the method suggested in [11]. 

We will be using the term ―S-Optimal Shortest (SOS) path‖ throughout the discussion to refer to 

the shortest path between si and sj (si, sj ϵ S) with maximum number of S-nodes on it.  The 

flowchart of CBRA algorithm is shown in Figure 4-1 and the pseudo code is shown in Figure 4-5. 
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Figure 4-1: CBRA Flowchart 

 

4.2 Evolution of Path Algorithm 

 

In all three steps of our algorithm, we need to find a shortest path between two nodes.  

Since our goal in finding a cyclic route is to include as many S-nodes as possible, the path 

finding algorithm evolved over two different approaches to reach the successful Method 3 - 

Modified Breadth First Search algorithm.  The three methods of path finding algorithm, 

evolution order of Method 1 to Method 3, are as follows.   
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1. Method 1 – Using Bellman-Ford algorithm 

     In method 1, we find a shortest path between two nodes using well-known Bellman-

Ford algorithm.  In this method we do not pay attention to S-node while finding the path, so we 

enhanced it with method-2 algorithm. 

 

2. Method 2 – Modified Bellman Ford Algorithm 

Using a suggestion from my fellow colleague, David Lastine, we modified Bellman-Ford 

algorithm by assigning weights of value zero to S-nodes and one to non-S nodes, and then we 

find a shortest path between two nodes which has lesser total cost.  This method improves the 

path selection towards our goal of including as many S-nodes as possible.  But this is further 

enhanced with method-3. 

 

3. Method 3 – Modified Breadth First Search 

In this method, using the suggestion from [11], we use Modified Breadth First Search 

algorithm to find a path between two nodes by specifically preferring S-nodes in the path.   

Modified Bread-First Search (BFS) algorithm is used to find ―S-Optimal Shortest (SOS) path” in 

all the steps of CBRA. Since Modified-BFS algorithm forms an integral part of CBRA, it will be 

described first, before explaining the three steps of CBRA.   
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4.3 Modified Breadth First Search (MBFS) 

 

4.3.1 S-optimal Shortest (SOS) path 

 

The S-Optimal Shortest (SOS) path is found by Modified BFS algorithm.  The algorithm 

begins at a node si ϵ S.  MBFS traverses the entire graph starting with root node si in a breadth 

first search manner, but with the goal to create a shortest-path tree.  The shortest-path tree is 

defined as a tree with the shortest path from root node to any child nodes.  This tree is created in 

the following manner.   

Let‘s say the root node si is at Level 0.  This root node is connected to all of its 

neighboring nodes.  These neighboring nodes are located at Level 1.  We connect each of the 

nodes in Level 1 to all its remaining neighboring nodes, which are not already included in upper 

level of the tree.  We ignore the edges connecting to the neighboring nodes which are present on 

the same level.  These newly connected neighboring nodes of Level 1 are located at Level 2.  

The entire shortest path tree is constructed in similar fashion.  The child nodes with more than 

one parent are resolved by choosing the parent with the higher number of S-nodes on its path to 

root.  The pseudo-code for the tree-construction algorithm is shown in Figure 4-4. 

 

We can verify that the MBFS finds S-Optimal shortest path by extending arguments for 

the correctness of a shortest path.  The correctness of a shortest path found by MBFS comes from 

the fact that every segment of a shortest path must also be a shortest path; otherwise the segment 

could be replaced with a shortest path lowering the total path length.  The length of a shortest 

path cannot be lowered, so no segment can be a non-shortest path between its end points. The 

introduction of a tie break means this is still the case, and a similar argument now applies to the 

number of S nodes. If any segment of a shortest path can be replaced with a segment of equal 

length that has more S nodes, then the path could not have been S-Optimal. 
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4.3.2 Illustration with an example 

 

The MBFS and its effect of the tie break are illustrated in Figure 4-3.   Here MBFS is 

executed on Arpanet with set S containing nodes {2, 5, 13, 14, 17, and 19} as shown in Figure 4-

2.  S-nodes are shown with darkly filled circles.  The root node and destination nodes are 2 and 

19 respectively.  Part (a) of Figure 4-3 shows the Arpanet with root node at the top and rest of 

the neighboring nodes connected to it at one level.  Also the links connecting nodes on same 

levels are removed.  Similarly MBFS traverses the nodes in each level in Part (a) of the figure 

from left to right and constructs the tree.  At each node MBFS selects its parent node, the one 

with shortest path to the root node; thereby it creates the shortest path tree.  In Figure 4-3 (a) 

initially node 6 would have its parent set to node 1.  Later when the possible children of node 5 

are considered, the parent of node 6 would be changed to node 5 since the path from node 5 to 

the root has more S-nodes. This is indicated by the link between nodes 1 and 6 being crossed out.  

The entire shortest path tree is shown in Figure 4-3 (b).  After the tree construction, the S-

Optimal shortest path between nodes 2 and 19 can be found by back-tracking the parents of 

nodes from node 19 till it reaches root node 2.  In MCRA, this S-optimal shortest path was found 

using Bellman-Ford algorithm. 

 

 

 

Figure 4-2: Arpanet network 
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Figure 4-3: Construction of Shortest Path Tree 

 

Once the shortest distance from the source to the destination is known, then extending the 

shortest path tree for all the remaining nodes is a waste of effort.  Therefore our Modified 

Breadth First Search stops running, when the level with the possible parents for the destination 

node is processed.  Even if the destination node is discovered early in the traversal of the level, 

that entire level must be processed since the parent node does not stabilize until the last node in 

that level is processed.  In some cases like in Step-I of the CBRA algorithm, we don‘t exactly 

know the destination node beforehand to find the S-Optimal shortest path and the destination 

parameter for MBFS will be passed as NULL.  Hence the entire shortest path tree (going through 

all the levels in the tree) has to be constructed by MBFS to select the destination node, sj ϵ S 

which has maximum number of S-nodes on its shortest path to root. If the destination parameter 

is NULL, MBFS returns the destination node, sj and its S-Optimal shortest path. 
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Figure 4-4: Pseudo code of MBFS module 
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Figure 4-5: Pseudo code of CBRA 



www.manaraa.com

17 

 

The variables used in the MBFS implementation module are described as follows.L0 and 

L1 hold two adjacent levels of the Shortest Path tree.  Parent is an array storing node parents, 

SN[si] is an array storing the number of S-nodes in the path starting at the root and ending at 

nodes.  Level is the array containing the distance of anode from the root node.  The node sL is a 

node that has the largest value in SN.  If the destination parameter of MBFS is passed as NULL, 

then sL is returned as the destination node.  The pseudo code for M (sk) is not provided as it is 

simply a tree traversal algorithm. It returns the path from sj to sk. 

 

4.4 CBRA – Step I 

 

4.4.1 Find Initial S-Optimal Shortest Path (ISOS) 

 

In step I of CBRA, for a given set of S-nodes{s1..,sm}, we find the S-Optimal shortest 

paths between all possible pair (si, sj) in the set S and select the path that contains maximum 

number of S-nodes in it.  This special shortest path is called Initial S-Optimal Shortest path 

(ISOS). 

We can find ISOS with the help of MBFS algorithm.  For each S-nodes, we invoke the 

MBFS code with the arguments sj and sk = NULL.  The S-Optimal shortest path returned by first 

iteration is set as ISOS initially.  Then we update ISOS for every other iteration, if the returned S-

Optimal shortest path has more S-nodes than that present in current ISOS path.  If the returned S-

Optimal shortest path has same number of S-nodes as that in current ISOS path, then we select 

the path with least number of total nodes to be newISOS.Step-1 is completed after all S-nodes are 

considered and outputs final ISOS. 
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4.5 CBRA - Step II 

 

4.5.1 Create an Incomplete Cycle (IC) 

 

In Step II, we find an S-Optimal shortest path between end nodes of ISOS path and hence 

try to create a cyclic route which passes through all or few of S-nodes.  The S-Optimal shortest 

path found in this step is edge-disjoint from the existing ISOS path. 

The S-Optimal shortest path is found by invoking MBFS algorithm with sj and sk as the 

parameters.sj and sk denote the end nodes of the ISOS.  We do not allow the links that are already 

used in ISOS while finding the SOS path in this step. By doing so, we find an alternate, disjoint 

SOS path between the end nodes of ISOS.  These disjoint SOS and ISOS paths are concatenated 

to create a cycle.  If all the S-nodes are included in the cycle, then it is a Complete Cycle and 

CBRA terminates.  Otherwise the cycle created is an incomplete cycle (IC) and the CBRA 

algorithm proceeds to Step III. 

4.6 CBRA - Step III 

 

4.6.1 Create a Complete Cycle 

 

In Step III, we find S-nodes which are not yet included in Incomplete Cycle (IC) and try 

to insert them into IC, so as to create a complete cycle.  Let‘s assume that these not-yet-included 

S-nodes are stored in set S’.  We try to replace a segment connecting consecutive S-nodes in 

Incomplete Cycle (IC), with S’-Optimal shortest path that passes through one or more S-nodes in 

S‘.  Similar to the previous definition, S’-Optimal shortest path (S’OS) refers to the shortest path 

between two S-nodes with maximum number of S‘-nodes on it.  Then newly included S-nodes (ϵ 

S‘) are removed from S‘.  The above said mode of segment replacement is continued till the set 

S‘ becomes NULL and hence creating a complete cycle. 
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The segment in IC, which is replaced in every iteration to include one or more nodes from 

S‘, is selected as follows.  For each node si in S‘, we determine the candidate segment connecting 

consecutive S-nodes in IC, which is to be replaced with a path passing through si.  This is done 

by the module Select - S’OSPaths.  This module finds the S’-Optimal shortest path between all 

valid consecutive S-nodes (sj, sk) in IC that passes through si; This S‘OS path can reuse some of 

the links in the corresponding segment which it is about to be replaced, but not the other links 

present in IC; This S‘OS path passing through si and between consecutive S-nodes (sj, sk) is 

found as two sub paths using the function Find - S’OSPath; one sub path between (sj, si) and 

other sub path between (si, sk); these two sub paths are nothing but S’-Optimal shortest path 

between the mentioned two end nodes.   After finding all S‘OS paths between every consecutive 

S-nodes segment in IC, which passes through si, we select one consecutive S-node segment as a 

candidate segment for si based on the maximum number of S’ nodes present on that S‘OS path. 

 

Similarly we find the candidate consecutive S-node segments and its S‘OS paths for all 

the nodes in S‘.  Then we select the final single candidate segment based on its S‘OS paths that 

includes the largest number of nodes in S‘.  This final candidate segment is replaced by its S‘OS 

path in IC.   The S‘ nodes in this S‘OS path are removed from the set S‘ and the Step III 

reiterates till it reaches one of the two cases. 

Case one -The set S‘ is NULL.  This implies that we have succeeded in finding the Complete 

Cycle for the given request. 

Case two -There is no valid final candidate segment and S‘OS path for any of the nodes present 

in S‘.  In this case the request will be blocked due to failure in finding the complete cycle with 

given set of nodes. 
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4.7 Functions used in CBRA 

 

4.7.1 Select – S’OS Paths 

 

Function Select – S’OS Paths is responsible for finding the candidate segment and its 

S‘OS paths for a node in the set S’.  One node from set S‘ i.e., si and the current Incomplete 

Cycle (IC) are input to the function Select - S’OS Paths.  It performs the necessary work to loop 

over all consecutive S-nodes pairs on Incomplete Cycle (IC) starting with one pair of S-nodes sj 

and sk to include node si.  It uses the function Find - S’OS Path to find the S‘OS path between 

consecutive S-node pair on IC, sj and sk, passing through si.  For each si, function Find - S’OS 

Path is called r times by this function Select - S’OS Paths, where r is the number of S-nodes 

currently in IC.  The maximum value of r can be |S|- 1.  Thus this function finds the S‘OS paths 

for all the segments and returns the best of all the S‘OS paths based on the one with maximum 

number of nodes in the set S‘.  
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Figure 4-6: Pseudo-code of functions used in CBRA implementation 
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4.7.2 Find–S’OS Path 

 

In this function we find S‘OS path between consecutive S-nodes, sj and sk, in IC passing 

through a node in set S‘, si.  This is accomplished with help of  function Find – S‘OS – path -

Helper. We maintain the following condition throughout the process of finding the S‘OS path. 

No link that is used on IC is available to the S‘OS path sj– si- sk except the links on path sj - sk on 

IC.  We find the path between nodes sj and si by creating a shortest path tree rooted at sj using the 

function MBFS (sj, si).  Similarly we find the path between si and sk by creating a tree rooted at 

si.  The union of the two paths forms the S‘OS path for a not-yet-included node si which is to be 

inserted between consecutive S-nodes sj and sk.  For the network shown in Figure 4-2 the IC is 

found to be 19, 17, 13, 11, 4, 2, 5, 6, 7, and 10 at the end of Step 2 of CBRA.  The S‘OS path 

between nodes 17 and 19 passing through node si i.e., 14 is found using trees in Figure 4.7 (a) 

and 4.7 (b).  The union of these two paths passing through node 14 is 17, 20, 14, 15, 16, 19. We 

find this S‘OS path for si in two directions sj– si–sk, sk-si-sj and return the path with maximum 

number of nodes in set S‘ and low total node cost. 

 

Figure 4-7: Step III of CBRA 
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4.8 CBRA Example 

 

An example for CBRA on Arpanet is shown in Figure 4-8.  The set of S-nodes received as 

input include 2, 5, 13, 14, 17 and 19.  The path 2, 4, 11, 13, 17, 19 with solid line in the figure 

represents the Initial SOS Path (ISOS) found in Step 1.  In the second step of CBRA, an alternate 

SOS path 2, 5, 6, 7, 10, 19 between end nodes of ISOS is found and inserted to create an 

Incomplete Cycle (IC) which is depicted in the figure with dotted line. Still the cycle is 

incomplete, because one S-node 14 is not included in the cycle.  The S’OS paths between 

consecutive pairs of S-nodes on IC passing through node14 are found and the path between 

consecutive pair of S-nodes 17, 19, which is shown in dashed line in the figure, is selected, as it 

is the shortest and most optimized path.  This path 17, 20, 14, 15, 16, 19 is inserted into IC to 

create a complete cycle and then the CBRA algorithm terminates successfully. 

 

 

 

Figure 4-8: Arpanet with routes found in Steps I, II and III 
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4.9 Time Complexity Analysis 

 

Let ‗n‘ and ‗q‘ represent total number of nodes and total number of edges in the network 

respectively.  As we earlier mentioned ‗m‘ represents number of multipoint nodes (S-nodes) 

taking part in the request.  The time complexity for our algorithm in Step-1, Step-2 and Step-3 

are O (mq), O (q) and O (m
2
q), respectively.  Hence the summed up complexity of our CBRA 

algorithm is O (m
2
q). 

 

4.10 Additional enhancements done over CBRA 

 

Although we found that the blocking cases of CBRA are quite low when compared to 

MCRA, we enhanced CBRA further to reduce the number of blocking requests to zero.  While 

analyzing the blocked requests for CBRA, we found an interesting observation.  The most of the 

blocked cases are because of one or more 2-degree S-nodes could not be included in the cycle. 

Since 2-degree nodes are too restricted in terms of routes (maximum of one) passing through 

them, it reduces the probability of those nodes to be included in the incomplete cycle IC when 

CBRA tries to insert them in the third step.  To overcome this, we developed a variation of 

CBRA in which the Step I of CBRA prefers the ISOS path with 2-degree S-nodes as its end 

nodes.  This variation of CBRA algorithm is referred as 2-degree CBRA.  In Figure 4-9, we have 

shown an example for 2-degree CBRA algorithm.  The initial path found in Step-1 has a two-

degree S-node as one of its end nodes.   

As another enhancement to the algorithm, we examined the process by which unwanted 

nodes were included in a cycle, in order to reduce the average cycle length.  When we selected 

SOS and Initial SOS paths with a maximum number of S-nodes on its path, we noticed that these 

paths can also be paths with many unwanted nodes. Since this is inefficient, we tried modifying 

this selection criterion of SOS path in Step-1 to ratio of S-nodes to total number of nodes in the 
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path. The variation of CBRA algorithm with this ratio as selection criteria and also with 

preference for 2-degree S-nodes as end nodes of ISOS will be referred as Enhanced CBRA 

(ECBRA).  Figure 4-10 shows an example for ECBRA algorithm.   The initial path found in Step 

-1 has a two-degree end node and ratio is of value 1.  Although there could be other path with a 

two degree end node and more S-nodes, but the ratio of S-nodes to total nodes cannot be higher 

than one, hence the path 13-17 is chosen in Step-1 

 

Figure 4-9: 2-Degree CBRA example 

 

 

Figure 4-10: ECBRA example 
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Chapter 5 Other Cycle finding heuristics used for analysis 

5.1 Enumerating All Simple Cycles 

 

It is interesting to note that while the number of simple cycles in a graph can be 

exponential in terms of number of nodes, but for practical networks considered by researchers 

such as COST239, Arpanet, and NSFNET, the number of actual cycles, as determined by 

enumeration, in terms of the number of nodes is approximately |V|
3.5

, |V|
2.25

 and |V|
2.0

 

respectively.  Of these three networks, the one with the most cycles is COST239, which has 3531 

cycles, whereas Arpanet and NSFNET have 847 and 199 cycles respectively.  These numbers are 

sufficiently small that grouping the cycles by sizes and checking each group for a cycle that can 

satisfy a request can be done in a reasonable time.  Therefore, we chose to use this algorithm and 

compare its results with CBRA.  Notice that since we are only enumerating simple cycles, it is 

possible we may not succeed for all requests. This algorithm is referred as Enumeration or 

Enum. 

5.2 Optimized Collapsed Ring (OCR) Heuristic 

 

Optimized Collapsed Ring (OCR) heuristic has been proposed in [10] to protect multicast 

sessions against any fiber cut in the network.  OCR has primary and backup paths for a given 

request.  In order to find the primary path, OCR starts from the source node and finds the closest 

destination node using shortest path algorithm and removes all the links along the path.  Then it 

resets the source node to be the previously used (last) destination node and finds the shortest path 

to next closest destination node.  Similarly all the destination nodes are included in the primary 

path.  For backup path, OCR finds the shortest path from first source node to final destination 

node thereby creating a cycle with set of destination nodes and source node. This heuristic 

algorithm is used to compare the performance of ECBRA in terms of cycle length and percent 

blocking. 
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Chapter 6 Numerical Analysis of CBRA, 2-Degree CBRA and ECBRA 

 

6.1 Graph Model Description 

 

To evaluate our algorithms, we generated random graphs with the following 

characteristics.  Fault-tolerant connections are not possible in 1-connected graphs; hence we 

needed to ensure that the random graphs are at least 2-connected.  We achieve this 2-

connectedness by starting with a Hamiltonian cycle passing through all the nodes.  Forcing a 

graph to have a Hamiltonian cycle is a stronger condition than necessary to create a 2-connected 

graph.  We add rest of the links in the graph randomly with probability given by Equation 1 

following the Waxman model.  In Equation 1, s and d are two nodes; D(s, d) is the distance 

between the nodes computed by using their coordinates in the grid, and α and β are two 

parameters that can be adjusted to control the number of links and their lengths in terms of 

distance of nodes on the Hamiltonian cycle. 

 

 

 

 Since we start with a Hamiltonian cycle in all the random graphs, a solution always exists 

to any request. This characteristic of random graph helps us evaluating the performance of our 

algorithm.  Since a cycle solution always exists, the blocking cases are due to lack of resources 

or failure of our algorithm.  
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6.2 Experimental Results for Static Traffic 

 

We explored the performance of all three variations of CBRA in terms of blocking and 

cycle length on random graphs with various link densities.  We ran the simulation on three 

different random graphs with 100 samples of each type for 10,000 (10k) requests. These three 

random graph types have different average number of links, 120, 360 and 720 links, respectively. 

All the random graphs have 60 nodes. Each request consists of 10 S-nodes.  Figure 6-1 shows the 

average cycle length found by three variations of CBRA.  We note that there is minimal impact 

on cycle length caused by enhancements on CBRA for all random graph types. The blocking 

percentage for random graphs with 120 and 360 links is shown in Figure 6-2. ECBRA has lower 

percent blocking than other two variations of CBRA for random graph with 120 links.  Hence, 

ECBRA is preferred over other variations of CBRA. In the next section, ECBRA is used to 

compare the performance with related cycle finding heuristics like Enumeration, OCR for 

dynamic traffic. 

 

  

Figure 6-1: Comparison of Average cycle length for random graphs 
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Figure 6-2: Comparison of percent blocking for random graphs 

 

6.3 Results for Dynamic Traffic 

6.3.1 Traffic Model 

 

In this section, we assume that traffic arrives and leaves the network for a cycle requests 

in an optical network deploying wavelength division multiplexing.  It is assumed that each link 

consists of a fiber with multiple wavelengths.  Each wavelength is assumed to have a capacity of 

OC-192. Requests are assumed to be of three different capacities OC-1, OC-3, and OC-12 with 

equal probability. The request arrival is a Poisson process with rate r and request holding time is 

exponential with average time of 1.  Our Traffic model assumes each link has a capacity of n 

lambdas as specified in user input and the wavelength continuity constraint is required to be 

maintained for any requests that have to be routed on a network.  For performance evaluation, we 

consider two wavelength selection schemes. In one scheme, called First Fit, we order 

wavelengths and find cycle in the first lambda that has sufficient free capacity. The other 

wavelength selection scheme is that we compute the cycle length for each lambda and select the 
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6.3.2 Comparison with Enumeration Heuristic 

 

We compare the performance of ECBRA heuristic with Enumeration cycle algorithm 

based on two evaluation metrics, average cycle length and blocking percentage of requests.  The 

experiment is performed on three well-known network topologies, i.e. Arpanet, NSFNET and 

Cost239, for dynamic traffic arriving at different rates.  We assume these networks have three 

wavelength capacity (3* OC-192) on all links.  Since we are considering traffic grooming and 

the size of each request is far less than a wavelength capacity, each link can accommodate many 

requests till link‘s capacity is exhausted.  We analyze the performance of the heuristics in two 

wavelength selection schemes, First Fit (FF) and Shortest Cycle (SC). Each multipoint request 

size is at most 25% of total nodes and the different arrival rates are simulated with input of 

100,000 requests. 

 

 

 

Figure 6-3: Comparison of Enumeration and ECBRA heuristic algorithms on Arpanet network 
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Figure 6-4: Comparison of Enumeration and ECBRA heuristic algorithms on NSFNET network 

 

 

 

Figure 6-5: Comparison of Enumeration and ECBRA heuristic algorithms on Cost239 network 
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Figure 6-6: Blocking percentage of Enumeration and ECBRA heuristic algorithms on Arpanet 

network 

 

 

Figure 6-7: Blocking percentage of Enumeration and ECBRA heuristic algorithms on NSFNET 

network 
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length. The average cycle length found by ECBRA is bit higher than that of Enumeration for 

both wavelength selection schemes.  It should be noted that the difference in length between 

these two heuristics is less than one node, which suggests that the scalable ECBRA performance 

is very close to that of un-scalable simple cycle generating Enumeration algorithm. The cycles 

generated with specific to wavelength selection schemes are as expected where First Fit (FF) has 

higher length than shorter cycle (SC) scheme.  The average cycle length comparison of ECBRA 

and Enumeration algorithm for NSFNET and Cost239 networks are shown in Figure 6-4 and 

Figure 6-5 in which the behavior of ECBRA is similar to that of Arpanet. 

 

The blocking percentage of requests for Arpanet using ECBRA and Enumeration 

algorithms is shown in Figure 6-6.  It can be seen that blocking percentage is zero for arrival 

rates up to 100 for both the heuristics.  When the arrival rate increases further, network could get 

overloaded and blocks some requests due to lack of resources.  At high arrival rates the blocking 

percentage of Enumeration algorithm is higher than that of ECBRA; this is because ECBRA 

tends to find non-simple cycles as well, which increases the probability of finding the cycle.  We 

can see similar behavior of Enumeration and ECBRA algorithms for NSFNET network in Figure 

6-7.  Considering the performance of ECBRA in terms of Average cycle length is close to that 

simple cycle and the blocking percentage lower than un-scalable Enumeration algorithm at high 

arrival rates, ECBRA is a preferable algorithm to find cycles when compared to Enumeration 

algorithm. 

 

6.3.3 Comparison with OCR Heuristic 

 

We depict the comparison of OCR heuristic with ECBRA in terms of average cycle 

length in NSFNET and Cost239 networks in Figures 6-8 and 6-9, respectively.  We can see that 



www.manaraa.com

34 

 

cycle length found by OCR is independent of request arrival rates and lower than that of 

ECBRA.  But the blocking percentage of OCR heuristic turns out to be very high.  We note that 

more than 50% of the requests are blocked by OCR heuristic at all the arrival rates used in the 

experiment. This makes OCR heuristic unreliable and not preferred in finding cycles through a 

given set of nodes when compared to ECBRA. 

 

Figure 6-8: Comparison of OCR and ECBRA heuristic algorithms on NSFNET network 

 

 

Figure 6-9: Comparison of OCR and ECBRA heuristic algorithms on Cost239 network 
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Chapter 7 Impairment Aware Cycle Based Routing Algorithm (IACBRA) 

 

7.1 Network Model 

 

In real networks, the links connecting two nodes will have impairment attributes at 

varying levels, which sometimes negatively influence the network performance.  It is imperative 

that the link impairments should be considered while finding a cycle to route the traffic through 

specified must-include nodes.  In this paper, we associate the impairment in a link to an integral 

value or called cost such that, higher the level of impairment, the cost associated with that link 

will also be higher.  Hence we develop an algorithm to find a possibly least impaired or least cost 

cycle passing through given set of nodes.   The network is modeled similar to that of ECBRA 

algorithm, using a graph model G (V, E, L (e)) and set S containing S-nodes that is given as part 

of multipoint request.  L (e) represents the cost of link e, where e ϵ E.  The only difference 

between CBRA and Impairment Aware Algorithm network model is the way costs are associated 

with the network.  In Impairment Aware algorithm, the cost is associated with links.  This 

implies that if link cost L(e) is equal to one for all the links in the network then IACBRA turns 

into CBRA algorithm.   

7.2 Impairment Aware Cycle Based Routing problem (IACBRA) 

 

Given a graph G (V, E, L (e)), S a subset of nodes in V, k be an integer and L(e)is the cost 

associated with the links, 

 

Is there a simple or non-simple cyclic route p (V’, E’), where V’ is the set of nodes in p and E’ is 

the set of edges in p, such that S V’ and Total Edge Cost (p), ∑     
    

<=k? 



www.manaraa.com

36 

 

 

 

7.3 IACBRA Description 

 

IACBRA is used to find a near optimal route for a multipoint request in a network with 

varying link quality.  We use the term ―S-Optimal Least Cost (SOLC) path‖ throughout the 

discussion to refer to the least link cost path between si and sj (si, sj ϵ S) with maximum number 

of S-nodes on it.  IACBRA implementation is very similar to that of CBRA except Modified 

Bread-First Search (MBFS).  Modified Bread-First Search (MBFS) module used in CBRA is 

changed to find ―S-Optimal Least Cost (SOLC) path” in all the steps of IACBRA. 

1. In Step-1, IACBRA finds the Initial-SOLC path. 

2. IACBRA searches for Disjoint-SOLC path between end nodes of Initial-SOLC path in 

Step-II.  If Step-II is successful, a cycle is formed passing through few or all S-nodes.  

If all the S-nodes are included, then the algorithm terminates successfully thereby 

skips Step-III. 

3. In Step-III, the S-nodes which are not included in steps I and II are inserted by 

replacing the existing segments in the cycle.  If all S-nodes are included in the cycle 

then IACBRA terminates successfully otherwise it reports failure. 

Since the steps involved in finding the cycle for a multipoint request in IACBRA is same as that 

of CBRA, we omitted the description of the steps. 

 

7.4 Link Cost Definition 

 

In most of the practical networks, the links will not be all of same quality.  The metric for 

measuring the quality of a link can be end-to-end delay, bandwidth availability, accessibility to 
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end nodes of a link, bit error rate and so on.   In this paper, we have considered the accessibility 

to end nodes of a link to evaluate the cost of that link and also random allocation of link cost.  In 

our simulation the formula used to calculate the cost of a link connecting nodes u and v is 

Link cost of e (u, v)                        

Degree (u or v) represents the node degree.  Link cost represents the degree of the end nodes.  

We have chosen link cost directly proportional to degree of end nodes because results in CBRA 

suggested that the nodes left out in blocked requests are nodes with small degree.  Hence we 

force our algorithm to take low cost path and thereby include as many lower degree nodes as 

possible.  Figure 7-1 shows Arpanet network with link cost mentioned on top of all edges.   

The nodes in darkly filled circles belong to the set S, which should be included in the cycle found 

by our algorithm. 

 

Figure 7-1: Arpanet network with costs mentioned on top of all links 

 

7.5 Modified Bread First Search (IACBRA) 

 

The S-Optimal Least Cost (SOLC) path is found by Modified BFS algorithm.  The 

algorithm begins at a node si ϵ S.  MBFS traverses the entire graph starting with root node si in a 

breadth first search manner but with the goal to create a least link-cost tree.  The Least link-cost 
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tree is defined as tree with lowest total link cost path from root node to any child nodes.   This 

tree is created in the following manner.   Let‘s say the root node si is at Level 0. This root node is 

connected to all of its neighboring nodes. These neighboring nodes are located at Level 1. We 

connect each of the nodes in Level 1 to all its remaining neighboring nodes, which are not 

already included in upper level of the tree. We ignore the edges connecting to the neighboring 

nodes which are present on the same level. These newly connected neighboring nodes of Level 1 

nodes are located at Level 2.  The rest of the least link-cost tree is constructed in similar fashion.  

The child nodes with more than one parent are resolved by choosing the parent node, which has 

lowest total link cost on its path to root node.  If there are more than one parent nodes which lead 

to root node at the same link cost, then the tie is broken by choosing the parent node with more 

number of S-nodes on its path.   

For Arpanet network with link weights, shown in Figure 7-1, MBFS creates a least link 

cost tree as depicted in Figure 7.2.  This example network has set S with following nodes {2, 5, 

13, 14, 17, and 19}.  The S-nodes are shown with circles in Figure 7.2.  In this example, MBFS 

create a least link cost tree with root node at 5 and returns the destination node which has 

maximum number of S-nodes in its least link path to root. 

 

Figure 7-2: Least link-cost tree created by MBFS of IACBRA 
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Part (a) of Figure 7-2 shows how least link cost tree of Arpanet is constructed.  While 

visiting each node, if the parent of its child node is not already set then MBFS sets the currently 

visited node as parent for all of such child nodes.  If the parent is already set for a child node then 

MBFS chooses its parent node which has with least cost path to the root node which is shown in 

Part (a) of Figure 7-2.  Initially node 1 would have its parent set to node 6.  Later when the 

possible children of node 2 are considered, the parent of node 1 would be changed to node 2 

since its path to root has same total link cost and has more S-nodes.  This is indicated by the link 

between nodes 1 and 6 being crossed out.  Similarly other links have been crossed out.  Figure 7-

2 (b) shows the final least link cost tree with root set to node 5 created for Step-1.  Here MBFS 

returns the node 14 and its path to root node, because it has SOLC path. 
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Chapter 8 Numerical analysis of ECBRA and IACBRA 

8.1 Experimental results for Static Traffic 

 

  We mentioned in earlier section that IACBRA is exactly same as ECBRA for graph G (V, 

E, L (e)) where L (e) = 1.  Hence we verified the results generated by both algorithms with L (e) 

= 1, for same set of multipoint requests and found that they match for every request.  In order to 

determine the performance improvement provided by IACBRA for a network with link costs (> 

1), we executed CBRA algorithm on the same network for same set of multipoint requests under 

static traffic scenario.  Then we calculated the total link cost for the each of the cycles generated 

by both the algorithms, to see the quantity of cost savings provided by IACBRA.  We ran 

ECBRA and IACBRA on Arpanet network, as shown in Figure 7.1, for the same set of 100,000 

multipoint requests.  Each request is of size 20-25% of total nodes in the network. The difference 

between total link cost for each of 100,000 cycles generated by ECBRA and IACBRA is shown 

in Figure 8.1.  This difference between ECBRA and IACBRA has been sorted in ascending 

order, in order to give vivid picture of IACBRA performance.   
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Figure 8-1: Total link cost difference between ECBRA and IACBRA 

Figure 8-1 shows around 90% of requests have lower total link cost for the cycle 

generated by IACBRA algorithm.  Also the average total link cost of cycles generated by 

IACBRA is one less than that of ECBRA.  Although this might look to be too small, but when 

we see the total range of link cost in the network, it gives better perspective.  The different values 

of link cost used in the network are 5, 6, 7, and 8.  Hence, given the range of link cost in the 

network to be mere 3, the improvement given by IACBRA algorithm is significant.  We have 

shown that if the range of link cost in the network is widened, the savings in average total link 

cost generated by IACBRA increases in next section.  Further analysis on the requests for which 

ECBRA algorithm generated cycles with lesser total link cost, reveals that it is because of the 

nature of network and the way our algorithm functions.  For all the requests, IACBRA finds the 

path with low total link cost in Step-1, when compared to that produced by ECBRA.  But as the 

algorithm proceeds, IACBRA have to add few extra nodes or take high cost paths with many 

nodes due to the earlier optimized decision in Step-1 or Step-2.  This could be solved by different 

complex heuristic which takes into consideration of link cost of all the steps but polynomial time 

execution is doubtful. 
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8.2 Simulation Results for Dynamic Traffic 

 

The experimental setup for analyzing the performance of IACBRA in dynamic scenario is 

as follows.  The networks have wavelength continuity constraint, links are assumed to have three 

lambdas, wavelength selection criteria is based on first fit wavelength and incoming requests are 

with size of 20-25% of total nodes.  The request arrival is a Poisson process with rate r and 

request holding time is exponential in time.  The request and link capacity are analogous to OC-3 

and 3 * OC-192 respectively.   

In order to compare IACBRA performance with ECBRA in dynamic traffic we ran the 

algorithms for different request arrival rates and compared the average total link cost of the 

cycles.  We considered three different scenarios which differ from the way the costs are 

associated with the links.  In case one, we assigned the costs for links based on the formula 

mentioned in earlier Link cost section.  Figure 8-2 shows the results of ECBRA and IACBRA 

algorithms for Arpanet network, where the difference between ECBRA and IACBRA 

algorithms‘ average total link cost of a cycle is less than 1.    In case two, we verified whether the 

performance improvement by IACBRA increases with widened range of link cost, by arbitrarily 

assigning low link cost for the links connecting two degree nodes and high link cost for the links 

connecting three/four degree nodes.  The example network for the case two is shown in Figure 8-

3.  We can see in Figure 8-4 that the difference between IACBRA and ECBRA‘s performance is 

high for wider range of link costs in the network.  So our IACBRA gain scales up with wider 

range of link cost used in the network.  In case three, we randomly assign the link cost 

irrespective of the degree of nodes being connected by a link.  Figure 8-5 is an example network 

for the case three.  The results for case three is shown in Figure 8-6, where IACBRA finds the 

cycles with lower total costs when compared to that found by ECBRA algorithm. 
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Figure 8-2: Comparison of ECBRA and IACBRA algorithms on Arpanet for case one 

 

 

 

 

Figure 8-3: Arpanet network with wider range of link costs 
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Figure 8-4: Comparison of ECBRA and IACBRA algorithms on Arpanet for case two 

 

 

 

Figure 8-5: Arpanet network with randomly assigned link costs 
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Figure 8-6: Comparison of ECBRA and IACBRA algorithms on Arpanet for case three 

 

We executed our IACBRA algorithm for Arpanet and NSFNET under dynamic traffic, to 

compare the cycle length generated by IACBRA with that of CBRA.  Figure 8-7 shows that the 

average cycle length generated by IACBRA on Arpanet is very close to CBRA results depicted 

in Figure 6-3.  We can see the similar comparison of average cycle length on NSFNET in 

Figures 8-8 and 6-4.  This suggests that IACBRA improved the total link cost of cycles without 

compensating on number of nodes in the cycle.   
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Figure 8-7: Average cycle length generated by IACBRA on Arpanet 

 

 

Figure 8-8: Average cycle length generated by IACBRA on NSFNET 

 

We also found that there is not much difference in blocking percentage of requests between 

IACBRA and CBRA algorithms. 

Conclusion and Future work 
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In this paper, we proposed a novel, fault tolerant cost-oriented cycle based routing 

algorithm for multipoint communication in core networks.  Our algorithm can also be used to 

find cycle with must-include nodes in cases like reliable point to point communication, multicast 

and preconfigured protection structures.  We extended our shortest cycle algorithm (ECBRA) to 

least-cost cycle algorithm (IACBRA), which finds many applications in Metropolitan Core 

networks (SONET/DWDM).  Our simulations show that ECBRA has higher success rate when 

compared to other existing heuristic algorithms.  IACBRA improves the total link cost of cycle 

without increasing the cycle length or blocking percentage, in both the cases where link costs are 

chosen randomly and the case where the link costs are assigned based on degree of nodes 

connected by that link. 

 

This research is primarily focused on multipoint communication in core networks.  Our 

simulation traffic model is based on wavelength continuity constraint which could be expanded 

to more sophisticated network with functionalities like lambda switching and aggregation.  This 

algorithm could also be extended to real-time multipoint communication like video conferencing, 

online games and other distributed applications where the nodes arrive and leave the network 

dynamically for a given request.  Our algorithm is only cost-oriented, so to apply for real-time 

applications the algorithm must also be implemented with end-to-end delay constraint between 

source-destination pairs.   

 

 

 

 

 

 



www.manaraa.com

48 

 

BIBLIOGRPAHY 

 

[1] D. Bertsekas and R. G. Gallager, "Data Networks", 2nd ed. EnglewoodCliffs, NJ: Prentice-Hall, 

1992. 

[2] H. Vardhan, S. Billenahalli, H. Wanjun, M. Razo, A. Sivasankaran, T. Limin T, P. Monti, M.  

Tacca, A. Fumagalli, "Finding a simple path with multiple must-include nodes," Modeling, 

Analysis & Simulation of Computer and Telecommunication Systems, 2009, MASCOTS 

'09. IEEE International Symposium on, vol., no., pp.1-3, 21-23 Sept. 2009. 

[3] S. Ramanathan, ―An algorithm for multicast tree generation in networks with asymmetric links,‖ 

in Proc. IEEE INFOCOM‘96, pp.337–344. 

[4] L. Kyou, G. Markowsky, and L. Berman, ―A fast algorithm for Steinertrees,‖ Acta Info., vol. 15, 

no. 2, pp. 141–145, 1981. 

[5] V. Rayward-Smith, ―The computation of nearly minimal Steiner treesin graphs,‖ Int. J. Math. 

Education Sci. Tech., vol. 14, no. 1, pp. 15–23,Jan./Feb. 1983. 

[6] David Lastine, Suresh Sankaran and Arun K Somani, ―A Fault-Tolerant Multipoint Cycle 

Routing Algorithm (MCRA) (An Invited Paper)‖, BROADNETS, 2010. 

[7] B. M. Waxman, ―Routing of multipoint connections,‖ IEEE Journal on Selected Areas in 

Communications, Vol. 6, No. 9, 1988, pp. 1617-1622. 

[8] R. Karp, R.M, J.Thatcher, ―Reducibility among Combinatorial Problems, Complexity of 

Computer Computations‖, Plenum Press, pp. 85-103, 1972. 

[9] Ayse Karaman and Hossam Hassanein, "DCMC – Delay-Constrained Multipoint 

Communication with Multiple Sources", Proceedings of the Eighth IEEE International 

Symposium on Computers and Communication (ISCC‘03), pp. 467—472. 

. 



www.manaraa.com

49 

 

[10] A. Khalil, A. Hadjiantonis, G. Ellinas, M.A. Ali, "Pre-planned multicast protection approaches 

in WDM mesh networks", Optical Communication, 2005, 31st European Conference,  pp. 

25- 26. 

[11] Arun K. Somani, ―A Modified Breadth First Search Algorithm to include required nodes,‖ 

personal communication, May 2010. 


	2011
	Impairment aware cycle based routing algorithm (IACBRA)
	Suresh Sankaran
	Recommended Citation


	tmp.1333719725.pdf.szF6Y

